Innogration (Suzhou) Co., Ltd.

15W, 12V RF Power LDMOS FETs

Description

The ITSN20015P2 is a common source N-channel, enhancement-mode lateral field-effect RF power transistor. It is designed for high gain, broadband commercial and industrial applications, with frequencies up to 2 GHz.

• Typical Performance (On Innogration fixture with device soldered):

 V_{DD} = 12 Volts, I_{DQ} = 300 mA, $\,$ CW.

Frequency		Gp (dB) P_1dB η _D		P_3dB	η _D	
(MHz)	Өр (ив)	(W)	(%)	(W)	(%)	
870	16.4	18	56	22	60	

• Typical Performance (On Innogration fixture with device soldered):

V_{DD} = 12 Volts, I_{DQ} = 350 mA, CW.										
Frequency	Gp (dB)	P_1dB	η _D	P_3dB	η _D					
(MHz)	Өр (ив)	(W)	(%)	(W)	(%)					
2000	10.2	14.9	48.7	18.8	52.8					

Features

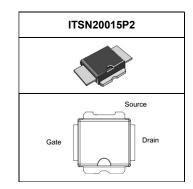
- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Designed for broadband operation
- Excellent ruggedness
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Pb-free, RoHS-compliant

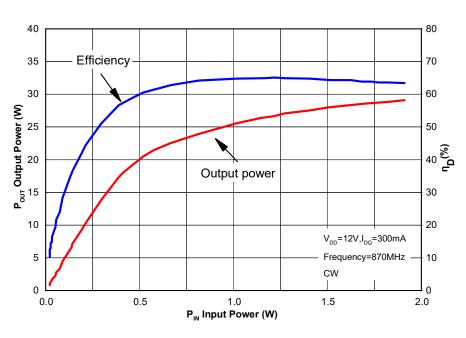
Table 1. Maximum Ratings

Rating	Symbol	Value	Unit			
DrainSource Voltage	V _{(BR)DSS}	+40	Vdc			
GateSource Voltage	V _{GS}	-0.5 to +10	Vdc			
Drain Current	ID	7	A			
Power Dissipation(@ T_c = 70 °C)	P _{DISS}	78	W			
Storage Temperature Range	Tstg	-65 to +150	°C			
Case Operating Temperature	Tc	+150	°C			
Operating Junction Temperature	TJ	+165	°C			
Table 2. Thermal Characteristics	····		·			
Characteristic	Symbol	Value	Unit			
Junction-Case Thermal Resistance	R _{thJC}	1.2	°C/W			

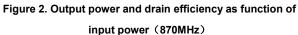
Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2




Figure 1. Pin Connection

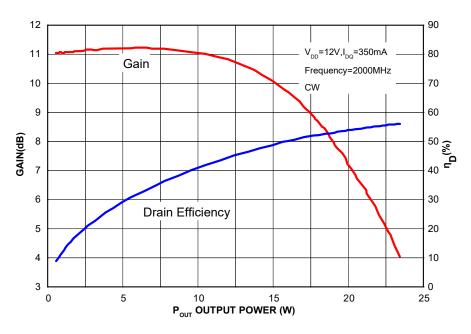
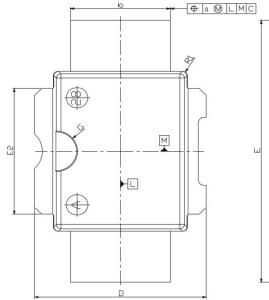
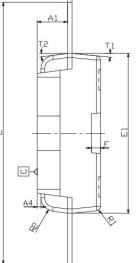
Innogration (Suzhou) Co., Ltd.

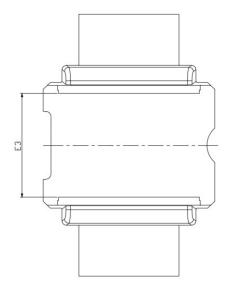

Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)

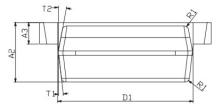
DC Characteristics

Characteristic and Conditions	Symbol	Min	Тур	Max	Unit	
Drain-Source Voltage			40		v	
V _{GS} =0, I _{DS} =10mA	V _{(BR)DSS}		40		v	
Zero Gate Voltage Drain Leakage Current						
$(V_{DS} = 25V, V_{GS} = 0 V)$	I _{DSS}			1	μA	
Gate-Source Leakage Current				1		
$(V_{GS} = 5 V, V_{DS} = 0 V)$	I _{GSS}				μA	
Gate Quiescent Voltage			4.0			
(V _{DS} = 10V, I _D = 350 mA)	V _{GS(Q)}		4.2			
Drain-Source Voltage (On state)	V			0.32	v	
$(V_{GS} = 10V, I_{D} = 1 A)$	V _{DS(ON)}			0.52	v	
Common Source Input Capacitance	6		57		۳Ľ	
$(V_{GS} = 0V, V_{DS} = 12.5 V, f = 1 MHz)$	C _{ISS}				pF	
Common Source Output Capacitance	6		41		pF	
$(V_{GS} = 0V, V_{DS} = 12.5 V, f = 1 MHz)$	C _{oss}		41		рг	
Common Source Feedback Capacitance	0		1.0		۳Ľ	
$(V_{GS} = 0V, V_{DS} = 12.5 V, f = 1 MHz)$	C _{RSS}		1.6		pF	
Functional Tests (In Innogration Test Fixture, 50 ohm system): V	_{DD} = 12 Vdc, I _{DQ} =	= 350 mA, f =2	000 MHz, CW			
Characteristic	Symbol	Min	Тур	Max	Unit	
Power Gain@ P _{OUT} =15W	Gp	8	10		dB	
Drain Efficiency@P_3dB	η _D	43	50		%	
3dB Compression Point	P_3dB		18		dBm	
	Load	00.1.4			1/01/15	
Load Mismatch, P _{OUT} =15W, All Phase angles	Mismatch	20:1			VSWR	

TYPICAL CHARACTERISTICS


Figure 3. Power gain and drain efficiency as function of output power (2000MHz)


Package Outline

Straight lead package dimensions

CRITICAL DIMENSIONS: - Overall width (L)

UNIT	A1	A2	A3	A4	а	b	с	D	D1	E	E1	E2	E3	F	G
	1.72	3.6	1.4	0.25	0.0	5.65	0.32	9.6	7.6	15.65	9.5	7.5	6.3	0.5	10
mm	1.62	3.4	1.2	0.15	0.2	5.4	0.23	9.4	7.4	15.15	9.3	7.3	5.9	0.5 1.2	1.2
inches	0.068	0.142	0.054	0.009	0.007	0.221	0.012	0.377	0.298	0.615	0.375	0.294	0.247	0.019	0.047
inches	0.064	0.134	0.046	0.005		0.212	0.008	0.370	0.290	0.595	0.365	0.286	0.231	0.019	0.047
UNIT	R1	R2	T1	T2											
mm	0.25	0.8	6deg	10deg											
inches	0.01	0.031	6deg	10deg											

Note: Resin protrusions not included (Max. value: 0.15 mm per side)

OUTLINE		REFE	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
PKG-P2-B						23/01/2017

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2017/01/23	Rev 1.0	Preliminary Datasheet
2017/02/27	Rev 2.0	Product Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.